Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

N-(6-Amino-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-N-(β -D-glucopyranosyl)acetamide

John Nicolson Low et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

electronic papers

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

N-(6-Amino-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-N-(β -D-glucopyranosyl)acetamide

John Nicolson Low, a* Sebastián Molina, Manuel Nogueras, Adolfo Sánchez and Justo Cobo

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 - Jaén, Spain Correspondence e-mail: j.n.low@dundee.ac.uk

Received 31 July 2000 Accepted 9 August 2000

Data validation number: IUC0000221

The title compound, $C_{13}H_{20}N_4O_8\cdot 2H_2O$, *i.e.* (I)·2H₂O, shows no unusual features. The structure contains two molecules of water of crystallization. The absolute configuration was not determined but was known from the starting materials.

Experimental

For preparation details, see Melgarejo *et al.* (1982). Suitable crystals (m.p. 543–545 K) for X-ray diffraction was obtained from the crude reaction (MeOH, NaOMe) after neutralization with acetic acid.

Crystal data

 $C_{13}H_{20}N_4O_8\cdot 2H_2O$ $M_r = 396.36$ Orthorhombic, $P2_12_12_1$ a = 7.0911 (1) Å b = 12.2566 (2) Å c = 20.5272 (4) Å V = 1784.08 (5) Å³ Z = 4 $D_x = 1.476$ Mg m⁻³ Mo $K\alpha$ radiation Cell parameters from 2711 reflections $\theta = 3.03-30.39^{\circ}$ $\mu = 0.127 \text{ mm}^{-1}$ T = 150 (2) KLath, colourless $0.33 \times 0.15 \times 0.13 \text{ mm}$

Data collection

KappaCCD diffractometer φ and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) $E_{\min} = 0.960, \, T_{\max} = 0.984$ $E_{\max} = 0$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & & w = 1/[\sigma^2(F_o^2) + (0.0567P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.039 & & + 0.5011P] \\ wR(F^2) = 0.100 & & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.057 & (\Delta/\sigma)_{\rm max} = 0.002 \\ 2711 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.20 \ \mbox{e Å}^{-3} \\ 251 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.26 \ \mbox{e Å}^{-3} \end{array}$

Compound (I)· $2H_2O$ crystallized in the orthorhombic system; space group $P2_12_12_1$ was assumed from the systematic absences. H atoms were treated as riding atoms with C-H=0.98-1.00 Å, N-H=0.88 Å and O-H=0.84 Å (except for those attached to the water O atoms). All H atoms were located initially by means of a difference Fourier synthesis, except for those attached to the methyl groups which were given a site-occupancy factor of 0.5 and placed at appropriate distances at the vertices of a regular hexagon. The water H atoms were fixed at the positions obtained from difference Fourier synthesis. Friedel pairs were merged since the the molecule contained no atom with Z>8. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97 and WordPerfect macro *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC, X-ray Crystallographic Service, University of Southampton, using an Enraf-Nonius KappaCCD diffractometer. The authors thank the staff for all their help and advice.

References

Blessing, R. H. (1995). *Acta Cryst.* A**51**, 33–37. Blessing, R. H. (1997). *J. Appl. Cryst.* **30**, 421–426.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

Melgarejo, M., Rodríguez, C., Rico, R. & Sánchez, A. (1982). *Anal. Quím.* **78**, 93–97.

Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2000). PLATON. Version of May 2000. University of Utrecht, The Netherlands.